381 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			Python
		
	
	
		
			Executable File
		
	
	
	
	
			
		
		
	
	
			381 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			Python
		
	
	
		
			Executable File
		
	
	
	
	
#!/usr/bin/env python3
 | 
						|
# -*- coding: utf-8 -*-
 | 
						|
 | 
						|
import os, sys
 | 
						|
sys.path.append(os.path.abspath(os.path.dirname(os.path.abspath(__file__))+"/../scripts"))
 | 
						|
 | 
						|
import fileinput
 | 
						|
import numpy as np
 | 
						|
import matplotlib as mpl
 | 
						|
import re
 | 
						|
 | 
						|
show = False
 | 
						|
if len(sys.argv) > 1 and sys.argv[1] == 'show':
 | 
						|
	show = True
 | 
						|
 | 
						|
if not show:
 | 
						|
	mpl.use('pgf')
 | 
						|
 | 
						|
import matplotlib.pyplot as plt
 | 
						|
from common import set_size, config_plt, get_colors
 | 
						|
 | 
						|
config_plt()
 | 
						|
 | 
						|
 | 
						|
def loadData(fn):
 | 
						|
	content = []
 | 
						|
 | 
						|
	with open(fn) as f:
 | 
						|
		content = f.readlines()
 | 
						|
 | 
						|
	zipcontent = zip(content[0::3], content[1::3], content[2::3])
 | 
						|
 | 
						|
	values = {}
 | 
						|
	for lconf, ltime, lresult in zipcontent:
 | 
						|
		match = re.search(r"f: [a-z_]*_([a-z]+).*grasp: ([0-9]+), outer: ([0-9]+), inner: ([0-9]+).*threads: (\d+)", lconf)
 | 
						|
		if match:
 | 
						|
			method = match.group(1)
 | 
						|
			grasp_n = int(match.group(2))
 | 
						|
			outer = int(match.group(3))
 | 
						|
			inner = int(match.group(4))
 | 
						|
			ncores = int(match.group(5))
 | 
						|
 | 
						|
		match = re.search(r"user ([^ ]+) sys (.*)$", ltime)
 | 
						|
		if match:
 | 
						|
			user = float(match.group(1))
 | 
						|
			sys = float(match.group(2))
 | 
						|
 | 
						|
		if method == 'firstlevel':
 | 
						|
			time = (user+sys) / min(ncores, grasp_n)
 | 
						|
		else:
 | 
						|
			time = (user+sys) / ncores
 | 
						|
 | 
						|
		if not ncores in values:
 | 
						|
			values[ncores] = []
 | 
						|
		values[ncores].append(time);
 | 
						|
 | 
						|
	return values
 | 
						|
 | 
						|
 | 
						|
def exportLegend(legend, filename):
 | 
						|
	fig = legend.figure
 | 
						|
	fig.canvas.draw()
 | 
						|
	fig.savefig(filename, format='pdf', bbox_inches=legend.get_window_extent().transformed(fig.dpi_scale_trans.inverted()))
 | 
						|
 | 
						|
 | 
						|
def figSeq(title, xlabel, rotation, output, datasrcs, scale, error=False):
 | 
						|
	fig = plt.figure()
 | 
						|
 | 
						|
	plt.title(title)
 | 
						|
	plt.xlabel(xlabel)
 | 
						|
	plt.ylabel(u"time (s)")
 | 
						|
 | 
						|
	nd = len(datasrcs)
 | 
						|
	labels = [datasrc[1] for datasrc in datasrcs]
 | 
						|
	plt.xticks(range(len(labels)), labels, rotation=rotation, ha='right')
 | 
						|
 | 
						|
	width = 0.5
 | 
						|
	pos = .5-.5*nd
 | 
						|
	x = 0
 | 
						|
	for f, label in datasrcs:
 | 
						|
		values = loadData(f)
 | 
						|
		barcolor, errcolor = get_colors(labels, label)
 | 
						|
 | 
						|
		for k, a in values.items():
 | 
						|
			m = np.mean(a)
 | 
						|
			s = 2.5758 * np.std(a) / np.sqrt(len(a))  # confiance 99 %
 | 
						|
 | 
						|
			plt.bar(x, m, width=width, color=barcolor, label=label)
 | 
						|
			if error:
 | 
						|
				plt.errorbar(x, m, s, elinewidth=2, capsize=4, ecolor=errcolor)
 | 
						|
			label=''
 | 
						|
 | 
						|
		pos = pos + 1
 | 
						|
		x = x+1
 | 
						|
 | 
						|
	fig.set_size_inches(set_size(455.24408, scale))
 | 
						|
 | 
						|
	if not show:
 | 
						|
		fig.savefig(output, format='pdf', bbox_inches='tight')
 | 
						|
	return plt
 | 
						|
 | 
						|
 | 
						|
def figCores(title, xlabel, xticks, output, datasrcs, scale, ycor=np.NaN, legendfile='', error=False):
 | 
						|
	fig = plt.figure()
 | 
						|
 | 
						|
	plt.title(title)
 | 
						|
	plt.xlabel(xlabel)
 | 
						|
	plt.ylabel(u"time (s)")
 | 
						|
	plt.xticks(xticks)
 | 
						|
 | 
						|
	if not np.isnan(ycor):
 | 
						|
		plt.gca().yaxis.set_label_coords(ycor, .5)
 | 
						|
 | 
						|
	nd = len(datasrcs)
 | 
						|
	labels = [datasrc[1] for datasrc in datasrcs]
 | 
						|
 | 
						|
	width = 0.16
 | 
						|
	pos = .5-.5*nd
 | 
						|
	for f, label in datasrcs:
 | 
						|
		values = loadData(f)
 | 
						|
		barcolor, errcolor = get_colors(labels, label)
 | 
						|
 | 
						|
		for k, a in values.items():
 | 
						|
			x = int(k)
 | 
						|
			m = np.mean(a)
 | 
						|
			s = 2.5758 * np.std(a) / np.sqrt(len(a))  # confiance 99 %
 | 
						|
 | 
						|
			x = x + pos*width
 | 
						|
 | 
						|
			plt.bar(x, m, width=width, color=barcolor, label=label)
 | 
						|
			if error:
 | 
						|
				plt.errorbar(x, m, s, elinewidth=.6, capsize=.6, ecolor=errcolor)
 | 
						|
			label=''
 | 
						|
 | 
						|
		pos = pos + 1
 | 
						|
 | 
						|
	fig.set_size_inches(set_size(455.24408, scale))
 | 
						|
 | 
						|
	bbox = (.9, .88)
 | 
						|
	if legendfile != '': # isolation of the legend
 | 
						|
		bbox = (2, 2)
 | 
						|
 | 
						|
	#  legend = fig.legend(bbox_to_anchor=bbox)
 | 
						|
	#  if legendfile != '':
 | 
						|
		#  if legendfile != 'x':
 | 
						|
			#  exportLegend(legend, legendfile)
 | 
						|
		#  legend.remove()
 | 
						|
 | 
						|
	if not show:
 | 
						|
		fig.savefig(output, format='pdf', bbox_inches='tight')
 | 
						|
	return plt
 | 
						|
 | 
						|
 | 
						|
def figCoresSpeedup(title, xlabel, xticks, output, basetime, datasrcs, scale, legendfile=''):
 | 
						|
	fig = plt.figure()
 | 
						|
 | 
						|
	plt.title(title)
 | 
						|
	plt.xlabel(xlabel)
 | 
						|
	plt.ylabel(u"speed up")
 | 
						|
	plt.xticks(xticks)
 | 
						|
 | 
						|
	plt.gca().yaxis.set_label_coords(-.105, .5)
 | 
						|
 | 
						|
	nd = len(datasrcs)
 | 
						|
	labels = [datasrc[1] for datasrc in datasrcs]
 | 
						|
 | 
						|
	width = 0.25
 | 
						|
	pos = .5-.5*nd
 | 
						|
	for f, label in datasrcs:
 | 
						|
		values = loadData(f)
 | 
						|
		barcolor, errcolor = get_colors(labels, label)
 | 
						|
 | 
						|
		if 1 in values:
 | 
						|
			values.pop(1)
 | 
						|
 | 
						|
		for k, a in values.items():
 | 
						|
			x = int(k)
 | 
						|
			m = basetime/np.mean(a)
 | 
						|
 | 
						|
			x = x + pos*width
 | 
						|
 | 
						|
			plt.bar(x, m, width=width, color=barcolor, label=label)
 | 
						|
			label=''
 | 
						|
 | 
						|
		pos = pos + 1
 | 
						|
 | 
						|
	fig.set_size_inches(set_size(455.24408, scale))
 | 
						|
 | 
						|
	bbox = (.485, .88)
 | 
						|
	if legendfile != '': # isolation of the legend
 | 
						|
		bbox = (2, 2)
 | 
						|
 | 
						|
	#  legend = fig.legend(bbox_to_anchor=bbox)
 | 
						|
	#  if legendfile != '':
 | 
						|
		#  if legendfile != 'x':
 | 
						|
			#  exportLegend(legend, legendfile)
 | 
						|
		#  legend.remove()
 | 
						|
 | 
						|
	if not show:
 | 
						|
		fig.savefig(output, format='pdf', bbox_inches='tight')
 | 
						|
	return plt
 | 
						|
 | 
						|
 | 
						|
def figSizeSpeedup(title, xlabel, xticks, output, basetimes, cores, datasrcs, scale, legendfile=''):
 | 
						|
	fig = plt.figure()
 | 
						|
 | 
						|
	plt.title(title)
 | 
						|
	plt.xlabel(xlabel)
 | 
						|
	plt.ylabel(u"speed up")
 | 
						|
	plt.xticks(xticks)
 | 
						|
 | 
						|
	plt.gca().yaxis.set_label_coords(-.11, .5)
 | 
						|
 | 
						|
	nd = len(datasrcs)
 | 
						|
	labels = [datasrc[1] for datasrc in datasrcs]
 | 
						|
 | 
						|
	width = 0.5
 | 
						|
	pos = .5-.5*nd
 | 
						|
	for fs, label in datasrcs:
 | 
						|
		barcolor, errcolor = get_colors(labels, label)
 | 
						|
 | 
						|
		xi = 0
 | 
						|
		for f in fs:
 | 
						|
			valuesAllCores = loadData(f)
 | 
						|
			values = valuesAllCores[cores]
 | 
						|
 | 
						|
			x = xticks[xi]
 | 
						|
			m = basetimes[xi]/np.mean(values)
 | 
						|
 | 
						|
			x = x + pos*width
 | 
						|
 | 
						|
			plt.bar(x, m, width=width, color=barcolor, label=label)
 | 
						|
			label=''
 | 
						|
 | 
						|
			xi = xi + 1
 | 
						|
 | 
						|
		pos = pos + 1
 | 
						|
 | 
						|
	fig.set_size_inches(set_size(455.24408, scale))
 | 
						|
 | 
						|
	bbox = (1.31, .88)
 | 
						|
	if legendfile != '': # isolation of the legend
 | 
						|
		bbox = (2, 2)
 | 
						|
 | 
						|
	legend = fig.legend(bbox_to_anchor=bbox)
 | 
						|
	if legendfile != '':
 | 
						|
		if legendfile != 'x':
 | 
						|
			exportLegend(legend, legendfile)
 | 
						|
		legend.remove()
 | 
						|
 | 
						|
	if not show:
 | 
						|
		fig.savefig(output, format='pdf', bbox_inches='tight')
 | 
						|
	return plt
 | 
						|
 | 
						|
 | 
						|
# script
 | 
						|
plts = []
 | 
						|
 | 
						|
for dataset in ['dj38', 'qa194']:
 | 
						|
	plt = figSeq(u"", u"method", 45,
 | 
						|
			"plots/rt_graspels_"+dataset+"_24_20_20_seq.pdf", [
 | 
						|
				['data_graspels/seq/rt_seq_'+dataset+'_24_20_20_hw_seq_v', 'hw_seq'],
 | 
						|
				['data_graspels/seq/rt_seq_'+dataset+'_24_20_20_sk_seq', 'sk_seq'],
 | 
						|
				['data_graspels/seq/rt_seq_'+dataset+'_24_20_20_hw_par_v', 'hw_par'],
 | 
						|
				['data_graspels/seq/rt_seq_'+dataset+'_24_20_20_sk_par_firstlevel', 'sk_firstlevel'],
 | 
						|
				['data_graspels/seq/rt_seq_'+dataset+'_24_20_20_sk_par_staticpool', 'sk_staticpool'],
 | 
						|
				['data_graspels/seq/rt_seq_'+dataset+'_24_20_20_sk_par_dynamicpool', 'sk_dynamicpool'],
 | 
						|
				['data_graspels/seq/rt_seq_'+dataset+'_24_20_20_sk_par_thread', 'sk_thread'],
 | 
						|
				],
 | 
						|
			scale=.8,
 | 
						|
			error=True
 | 
						|
			)
 | 
						|
	plts.append(plt)
 | 
						|
 | 
						|
 | 
						|
for dataset in ['dj38', 'qa194']:
 | 
						|
	plt = figCores(u"", u"number of cores", [2, 4, 6, 8, 10, 12, 14, 16, 18],
 | 
						|
			"plots/rt_graspels_"+dataset+"_24_20_20_par.pdf", [
 | 
						|
				['data_graspels/var_cores/rt_cores_'+dataset+'_24_20_20_hw_par_v', 'hw_par'],
 | 
						|
				['data_graspels/var_cores/rt_cores_'+dataset+'_24_20_20_sk_par_firstlevel', 'sk_firstlevel'],
 | 
						|
				['data_graspels/var_cores/rt_cores_'+dataset+'_24_20_20_sk_par_staticpool', 'sk_staticpool'],
 | 
						|
				['data_graspels/var_cores/rt_cores_'+dataset+'_24_20_20_sk_par_dynamicpool', 'sk_dynamicpool'],
 | 
						|
				['data_graspels/var_cores/rt_cores_'+dataset+'_24_20_20_sk_par_thread', 'sk_thread'],
 | 
						|
				],
 | 
						|
			scale=.8,
 | 
						|
			error=False
 | 
						|
			)
 | 
						|
	plts.append(plt)
 | 
						|
 | 
						|
 | 
						|
legendfile = 'plots/rt_graspels_qa194_var_grasp_par_legend.pdf'
 | 
						|
for grasp_n in range(4, 21, 4):
 | 
						|
	plt = figCores(u"", u"number of cores", [2, 4, 6, 8, 10, 12, 14, 16, 18],
 | 
						|
			"plots/rt_graspels_qa194_v"+str(grasp_n)+"_20_20_par.pdf", [
 | 
						|
				['data_graspels/var_grasp/rt_cores_qa194_'+str(grasp_n)+'_20_20_hw_par_v', 'hw_par'],
 | 
						|
				['data_graspels/var_grasp/rt_cores_qa194_'+str(grasp_n)+'_20_20_sk_par_firstlevel', 'sk_firstlevel'],
 | 
						|
				['data_graspels/var_grasp/rt_cores_qa194_'+str(grasp_n)+'_20_20_sk_par_staticpool', 'sk_staticpool'],
 | 
						|
				['data_graspels/var_grasp/rt_cores_qa194_'+str(grasp_n)+'_20_20_sk_par_dynamicpool', 'sk_dynamicpool'],
 | 
						|
				['data_graspels/var_grasp/rt_cores_qa194_'+str(grasp_n)+'_20_20_sk_par_thread', 'sk_thread'],
 | 
						|
				],
 | 
						|
			scale=.48,
 | 
						|
			ycor=-.16,
 | 
						|
			legendfile=legendfile,
 | 
						|
			error=False
 | 
						|
			)
 | 
						|
	plts.append(plt)
 | 
						|
	legendfile = 'x'
 | 
						|
 | 
						|
 | 
						|
#  legendfile = 'plots/rt_graspels_qa194_var_els_iter_max_par_legend.pdf'
 | 
						|
#  for els_iter_max in [1, 2, 4, 8, 12, 16, 20, 30, 40, 50]:
 | 
						|
	#  plt = figCores(u"", u"number of cores", [2, 4, 6, 8, 10, 12, 14, 16, 18],
 | 
						|
			#  "plots/rt_graspels_qa194_4_v"+str(els_iter_max)+"_20_par.pdf", [
 | 
						|
				#  ['data_graspels/var_els/rt_cores_qa194_4_'+str(els_iter_max)+'_20_hw_par_v', 'hw_par'],
 | 
						|
				#  ['data_graspels/var_els/rt_cores_qa194_4_'+str(els_iter_max)+'_20_sk_par_firstlevel', 'sk_firstlevel'],
 | 
						|
				#  ['data_graspels/var_els/rt_cores_qa194_4_'+str(els_iter_max)+'_20_sk_par_staticpool', 'sk_staticpool'],
 | 
						|
				#  ['data_graspels/var_els/rt_cores_qa194_4_'+str(els_iter_max)+'_20_sk_par_dynamicpool', 'sk_dynamicpool'],
 | 
						|
				#  ['data_graspels/var_els/rt_cores_qa194_4_'+str(els_iter_max)+'_20_sk_par_thread', 'sk_thread'],
 | 
						|
				#  ],
 | 
						|
			#  scale=.48,
 | 
						|
			#  ycor=-.13,
 | 
						|
			#  legendfile=legendfile,
 | 
						|
			#  error=True
 | 
						|
			#  )
 | 
						|
	#  plts.append(plt)
 | 
						|
	#  legendfile = 'x'
 | 
						|
 | 
						|
 | 
						|
for grasp_n in range(4, 21, 4):
 | 
						|
	values = loadData('data_graspels/var_grasp/rt_cores_qa194_'+str(grasp_n)+'_20_20_hw_par_v')
 | 
						|
	basetime = np.mean(values[1])
 | 
						|
	plt = figCoresSpeedup(u"", u"number of cores", [2, 4, 6, 8, 10, 12, 14, 16, 18],
 | 
						|
			"plots/rt_graspels_qa194_"+str(grasp_n)+"_20_20_speedup.pdf", basetime, [
 | 
						|
				['data_graspels/var_grasp/rt_cores_qa194_'+str(grasp_n)+'_20_20_hw_par_v', 'hw_par'],
 | 
						|
				['data_graspels/var_grasp/rt_cores_qa194_'+str(grasp_n)+'_20_20_sk_par_firstlevel', 'sk_firstlevel'],
 | 
						|
				['data_graspels/var_grasp/rt_cores_qa194_'+str(grasp_n)+'_20_20_sk_par_staticpool', 'sk_staticpool'],
 | 
						|
				['data_graspels/var_grasp/rt_cores_qa194_'+str(grasp_n)+'_20_20_sk_par_dynamicpool', 'sk_dynamicpool'],
 | 
						|
				['data_graspels/var_grasp/rt_cores_qa194_'+str(grasp_n)+'_20_20_sk_par_thread', 'sk_thread'],
 | 
						|
				],
 | 
						|
			scale=.8
 | 
						|
			)
 | 
						|
	plts.append(plt)
 | 
						|
 | 
						|
 | 
						|
#  for cores in [1, 2, 4, 6, 8, 10, 12, 14, 16, 18]:
 | 
						|
#  #  for cores in [16]:
 | 
						|
	#  basetimes = []
 | 
						|
	#  for grasp_n in range(4, 21, 4):
 | 
						|
		#  values = loadData('data_graspels/var_grasp/rt_cores_qa194_'+str(grasp_n)+'_20_20_hw_par_v')
 | 
						|
		#  basetimes.append(np.mean(values[1]))
 | 
						|
	#  values = loadData('data_graspels/var_cores/rt_cores_qa194_24_20_20_hw_par_v')
 | 
						|
	#  basetimes.append(np.mean(values[1]))
 | 
						|
#  
 | 
						|
	#  hw_par = ['data_graspels/var_grasp/rt_cores_qa194_'+str(grasp_n)+'_20_20_hw_par_v' for grasp_n in range(4, 21, 4)]
 | 
						|
	#  hw_par.append('data_graspels/var_cores/rt_cores_qa194_24_20_20_hw_par_v')
 | 
						|
	#  firstlevel = ['data_graspels/var_grasp/rt_cores_qa194_'+str(grasp_n)+'_20_20_sk_par_firstlevel' for grasp_n in range(4, 21, 4)]
 | 
						|
	#  firstlevel.append('data_graspels/var_cores/rt_cores_qa194_24_20_20_sk_par_firstlevel')
 | 
						|
	#  staticpool = ['data_graspels/var_grasp/rt_cores_qa194_'+str(grasp_n)+'_20_20_sk_par_staticpool' for grasp_n in range(4, 21, 4)]
 | 
						|
	#  staticpool.append('data_graspels/var_cores/rt_cores_qa194_24_20_20_sk_par_staticpool')
 | 
						|
	#  dynamicpool = ['data_graspels/var_grasp/rt_cores_qa194_'+str(grasp_n)+'_20_20_sk_par_dynamicpool' for grasp_n in range(4, 21, 4)]
 | 
						|
	#  dynamicpool.append('data_graspels/var_cores/rt_cores_qa194_24_20_20_sk_par_dynamicpool')
 | 
						|
	#  thread = ['data_graspels/var_grasp/rt_cores_qa194_'+str(grasp_n)+'_20_20_sk_par_thread' for grasp_n in range(4, 21, 4)]
 | 
						|
	#  thread.append('data_graspels/var_cores/rt_cores_qa194_24_20_20_sk_par_thread')
 | 
						|
#  
 | 
						|
	#  plt = figSizeSpeedup(u"", u"$N$", [4, 8, 12, 16, 20, 24],
 | 
						|
			#  "plots/rt_graspels_qa194_all_20_20_speedup_"+str(cores)+".pdf", basetimes, cores, [
 | 
						|
				#  [hw_par, 'hw_par'],
 | 
						|
				#  [firstlevel, 'sk_firstlevel'],
 | 
						|
				#  [staticpool, 'sk_staticpool'],
 | 
						|
				#  [dynamicpool, 'sk_dynamicpool'],
 | 
						|
				#  [thread, 'sk_thread'],
 | 
						|
				#  ],
 | 
						|
			#  scale=.7
 | 
						|
			#  )
 | 
						|
	#  plts.append(plt)
 | 
						|
 | 
						|
 | 
						|
if show:
 | 
						|
	for plt in plts:
 | 
						|
		plt.show()
 |