114 lines
		
	
	
		
			2.5 KiB
		
	
	
	
		
			Python
		
	
	
		
			Executable File
		
	
	
	
	
			
		
		
	
	
			114 lines
		
	
	
		
			2.5 KiB
		
	
	
	
		
			Python
		
	
	
		
			Executable File
		
	
	
	
	
#!/usr/bin/env python3
 | 
						|
# -*- coding: utf-8 -*-
 | 
						|
 | 
						|
import os, sys
 | 
						|
sys.path.append(os.path.abspath(os.path.dirname(os.path.abspath(__file__))+"/../scripts"))
 | 
						|
 | 
						|
import fileinput
 | 
						|
import numpy as np
 | 
						|
import matplotlib as mpl
 | 
						|
 | 
						|
show = len(sys.argv) > 1 and sys.argv[1] == 'show'
 | 
						|
if not show:
 | 
						|
	mpl.use('pgf')
 | 
						|
 | 
						|
import matplotlib.pyplot as plt
 | 
						|
import matplotlib.lines as lines
 | 
						|
from common import set_size, config_plt, get_colors, fix_log_rects
 | 
						|
 | 
						|
config_plt()
 | 
						|
 | 
						|
 | 
						|
def loadData(fn):
 | 
						|
	content = []
 | 
						|
 | 
						|
	with open(fn) as f:
 | 
						|
		content = f.readlines()
 | 
						|
 | 
						|
	values = {}
 | 
						|
	for line in content:
 | 
						|
		n, method, sample, ncores, strtime = [x for x in line.split(':')]
 | 
						|
		time = float(strtime)
 | 
						|
		if method != "seq":
 | 
						|
			time = time/float(ncores)
 | 
						|
		if not n in values:
 | 
						|
			values[n] = []
 | 
						|
		values[n].append(time);
 | 
						|
 | 
						|
	return values
 | 
						|
 | 
						|
 | 
						|
def figSize(title, xlabel, xticks, output, datasrcs, error=False):
 | 
						|
	fig = plt.figure()
 | 
						|
 | 
						|
	plt.title(title)
 | 
						|
	plt.xlabel(xlabel)
 | 
						|
	plt.ylabel(u"temps (s)")
 | 
						|
	plt.xticks(xticks)
 | 
						|
	plt.xscale('log')
 | 
						|
	plt.yscale('log')
 | 
						|
 | 
						|
	nd = len(datasrcs)
 | 
						|
 | 
						|
	width = 3.5
 | 
						|
	pos = .5-.5*nd
 | 
						|
	for f, label in datasrcs:
 | 
						|
		values = loadData(f)
 | 
						|
		barcolor, errcolor = get_colors(['seq', 'omp', 'gen_omp', 'gen_thread'], label)
 | 
						|
 | 
						|
		for k, a in values.items():
 | 
						|
			x = int(k)
 | 
						|
			m = np.mean(a)
 | 
						|
			s = 2.5758 * np.std(a) / np.sqrt(len(a))  # confiance 99 %
 | 
						|
 | 
						|
			x = x * ((20+width)/(20-width))**pos
 | 
						|
 | 
						|
			p = np.log10(x)
 | 
						|
			lwidth = width * 10**(p-1)
 | 
						|
 | 
						|
			bar = plt.bar(x, m, width=lwidth, color=barcolor, label=label)
 | 
						|
			fix_log_rects(bar, 1e-4)
 | 
						|
 | 
						|
			if error:
 | 
						|
				plt.errorbar(x, m, s, elinewidth=1.5, capsize=2, ecolor=errcolor)
 | 
						|
			label=''
 | 
						|
 | 
						|
		pos = pos + 1
 | 
						|
 | 
						|
	plt.legend(bbox_to_anchor=(.38, 1))
 | 
						|
 | 
						|
	fig.set_size_inches(set_size(455.24408, .8))
 | 
						|
	if not show:
 | 
						|
		plt.savefig(output, format='pdf', bbox_inches='tight')
 | 
						|
	return plt
 | 
						|
 | 
						|
 | 
						|
# script
 | 
						|
plts = []
 | 
						|
 | 
						|
plt = figSize(u"", u"taille des données", [1e2, 1e3, 1e4, 1e5, 1e6, 1e7],
 | 
						|
		"plots/rt_seq.pdf", [
 | 
						|
			['data_basic/rt_seq_seq', 'seq'],
 | 
						|
			['data_basic/rt_seq_gen_omp', 'gen_omp'],
 | 
						|
			['data_basic/rt_seq_gen_thread', 'gen_thread'],
 | 
						|
			],
 | 
						|
		error=True
 | 
						|
		)
 | 
						|
plts.append(plt)
 | 
						|
 | 
						|
for cores in [1, 2, 4, 6, 8, 10, 12, 14, 16, 18]:
 | 
						|
	plt = figSize(u"", u"taille des données", [1e2, 1e3, 1e4, 1e5, 1e6, 1e7],
 | 
						|
			"plots/rt_par_"+str(cores)+".pdf", [
 | 
						|
				['data_basic/rt_size_'+str(cores)+'_seq', 'seq'],
 | 
						|
				['data_basic/rt_size_'+str(cores)+'_omp', 'omp'],
 | 
						|
				['data_basic/rt_size_'+str(cores)+'_gen_omp', 'gen_omp'],
 | 
						|
				['data_basic/rt_size_'+str(cores)+'_gen_thread', 'gen_thread'],
 | 
						|
				],
 | 
						|
			error=True
 | 
						|
			)
 | 
						|
	plts.append(plt)
 | 
						|
 | 
						|
if show:
 | 
						|
	for plt in plts:
 | 
						|
		plt.show()
 |