#ifndef ALSK_ALSK_EXECUTOR_IMPL_FIRSTLEVEL_NOOPTI_H #define ALSK_ALSK_EXECUTOR_IMPL_FIRSTLEVEL_NOOPTI_H #include #include #include #include #include "../../executorbase.h" #include "../../executorstate.h" #include "../../../skeleton/traits.h" namespace alsk { namespace exec { template struct FirstLevelNoOpti: ExecutorBase { using Tag = alsk::tag::Parallel; public: struct Info { unsigned int parDepth; }; private: unsigned int threadLimit(unsigned int level) const { return level? 1 : cores; } public: template std::size_t contextIdCount(Impl&, std::size_t count) { return count; } template std::size_t contextId(Impl&, std::size_t id) { return id; } template void executeParallel(Impl& impl, BTask& task, Parameters const& parameters, std::size_t n) { auto const& parDepth = impl.executorInfo.parDepth; std::size_t const maxThreads = threadLimit(parDepth); std::size_t const nThreads = std::min(n, maxThreads); if(nThreads > 1) { Info info{parDepth+1}; std::vector threads(nThreads-1); std::size_t const step = std::round(static_cast(n)/nThreads); auto run = [&](std::size_t b, std::size_t k) { for(std::size_t i = 0; i < k; ++i) Task::execute(impl, task, b+i, info, parameters, std::tuple<>{}); }; for(std::size_t i = 0; i < nThreads-1; ++i) threads[i] = std::thread{run, i*step, step}; run((nThreads-1)*step, n-(nThreads-1)*step); for(std::thread& thread: threads) thread.join(); } else { Info info{parDepth}; for(std::size_t i = 0; i < n; ++i) Task::execute(impl, task, i, info, parameters, std::tuple<>{}); } } template Value executeParallelAccumulate(Impl& impl, BTask& task, BSelect& select, Parameters const& parameters, std::size_t n) { auto const& parDepth = impl.executorInfo.parDepth; std::size_t const maxThreads = threadLimit(parDepth); // TODO fix neighbours Value best{}; std::size_t const nThreads = std::min(n, maxThreads); if(nThreads > 1) { Info info{parDepth+1}; std::vector threads(nThreads-1); std::size_t const step = n/nThreads; std::size_t const remainBase = n - step*nThreads; std::size_t remain = remainBase; auto run = [&](Value& out, std::size_t b, std::size_t k) { Value best{}; if(k) best = Task::execute(impl, task, b+0, info, parameters, std::tuple<>{}); for(std::size_t i = 1; i < k; ++i) { Value current = Task::execute(impl, task, b+i, info, parameters, std::tuple<>{}); best = Select::execute(impl, select, b+i, info, parameters, std::tuple<>{}, std::move(current), std::move(best)); } out = std::move(best); }; std::size_t start{}; std::vector bests(nThreads); for(std::size_t i = 0; i < nThreads-1; ++i) { std::size_t offset = !!remain; remain -= offset; threads[i] = std::thread{run, std::ref(bests[i]), start, step+offset}; start += step+offset; } run(bests[nThreads-1], start, step); for(std::thread& thread: threads) thread.join(); if(nThreads) best = std::move(bests[0]); for(std::size_t i = 1; i < nThreads; ++i) best = Select::execute(impl, select, i, info, parameters, std::tuple<>{}, std::move(bests[i]), std::move(best)); } else { Info info{parDepth}; if(n) best = Task::execute(impl, task, 0, info, parameters, std::tuple<>{}); for(std::size_t i = 1; i < n; ++i) { Value current = Task::execute(impl, task, i, info, parameters, std::tuple<>{}); best = Select::execute(impl, select, i, info, parameters, std::tuple<>{}, std::move(current), std::move(best)); } } return best; } }; template struct ExecutorState> {}; } } #endif