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Abstract
Algorithmic skeletons, introduced by Cole, were designed
to ease the development of parallel software. This article
presents a way to represent and implement algorithmic
skeletons using bones – atomic elements – to build struc-
tures, and data flow graphs to link the structures.

We design and implement a library relying on Template
Metaprogramming (TMP) to describe and use both skele-
tons and links to produce automatically either a sequential
or a parallel implementation of the algorithm, aiming slight
to no run-time overhead compared to handwritten imple-
mentations.

Performance results of this library, applied to metaheuris-
tics in Operations Research (OR), are presented to that
this approach induces negligible run-time overhead.
Keywords: algorithmic skeletons, parallelization, tem-

plate metaprogramming.

1 Introduction
Most computers having multiple cores, developing parallel
software has become necessary in order to make full use of
the available hardware. This has led to the development
of numerous tools to ease the implementation of parallel
programs, from low level techniques (e.g. specific compilers)
to more high level abstractions (e.g. generic libraries).
Our objective is to propose a new parallelization tool

that is usable in existing projects (i.e. no new language or
specific compiler is needed) and yet not inducing an avoid-
able run-time overhead when compared to a handwritten
implementation. Additionally, we want this tool to provide
a clean interface, not requiring to pollute the domain code
with parallelization details. This last point oriented our
solution towards algorithmic skeletons which enable sepa-
ration of domain code and parallelization implementation.

The advantage of libraries over most low level techniques
is their portability. However, this usually comes with a
cost: an abstraction layer producing a less efficient binary
than the equivalent handwritten code, which a compiler
would be able to produce. Metaprogramming can be seen
as an intermediary approach because it makes it possible
to produce code without rewriting a full-fledged compiler.
Specifically, the C++ language offers Template Metapro-
gramming (TMP) allowing metaprogramming at library

level.
This paper presents our proposal for a new algorithmic

skeleton library in C++, using an example application from
Operations Research (OR), a Greedy Randomized Adap-
tive Search Procedure (GRASP) described in algorithm 1.
Its goal is to find the best solution S∗, given a problem P .
It is done by generating and improving multiple indepen-
dent solutions, making it suitable for parallelization.

Algorithm 1 GRASP
function GRASP(P )

for i = 1..N do
Si ← constructiveHeuristic(P )
Si ← localSearch(P, Si)

end for
S∗ ← select({S1, S2, ..., SN})
return S∗

end function

2 Algorithmic skeletons
Algorithmic skeletons were designed by Cole [3] to ease the
development of parallel software by providing patterns to
be used to describe an algorithm so that it will then be
automatically parallelized. Numerous tools based on this
concept exist, Skandium [6] in Java, working at run-time,
Quaff [5] and Muesli [2] in C++, based on TMP, and
SkePU 2 [4] which also makes use of TMP but relies on a
pre-compilation step. None of these implementations per-
mit the complete representation of an algorithm, including
its sequential parts. This effectively reduces the possible
code coverage of these algorithmic skeleton tools. Being
able to get all this information in a single skeleton enables
better results when making decisions about how tasks must
be orchestrated.

2.1 Structure
An algorithmic skeleton represents an algorithm whose
overall structure is known, but some details can be defined
in a later step. This structure must be described by the
developer. For this purpose, we provide atomic elements,
called bones, each one implementing a specific sequential
or parallel pattern such as a sequence of tasks or a farm [1].
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Both bones and compound structures can be used to build
new structures.

Algorithm 1 presents an algorithm, GRASP, whose struc-
ture is composed of a loop, repeating a sequence of 2 tasks
(a constructive heuristic (CH), to build a random solution,
followed by a local search (LS) that improves the solu-
tion), then a sequential instruction that selects (Sel) the
best solution. Figure 1 is a representation of this GRASP
structure.

CH ... CH

LS ... LS

Sel

Figure 1: GRASP structure

2.2 Muscles
The circles in figure 1 are slots for tasks yet to be defined.
These are called muscles in algorithmic skeleton termi-
nology and are comparable to functions. For our library,
these are implemented by regular C++ functions. This
demonstrates the separation between domain code, written
in muscles, and the parallelization details, written in bones
and used through skeletons (i.e. structure and links). It
also allows existing code to be easily used with our library.

2.3 Links
Apart from structure, our library requires the developer to
define the data flow graph, that we named links, which de-
scribe how data is transferred between all tasks executions.
This part is usually automatically done by the libraries,
however this implies less flexibility and add constraints
when defining tasks. In addition, having links explicitly
defined enables potential optimizations through TMP and
helps producing better implementations (e.g. by avoiding
copies).

A task to execute can be either a muscle or a skeleton, in
both cases it behaves as a callable. For that reason, links
are described using function signatures, which contain the
return type and the parameter list. Our library provides
placeholder types to make the links. For example, it is
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Figure 2: Execution time depending on the number of
iterations

possible to write that a muscle accepts as first parameter
the return value of its predecessor, or the second argument
of its caller. This type is then replaced by the corresponding
actual type.

3 Performance results
We used Template Metaprogramming (TMP) in order to
avoid inducing run-time overhead when compared to a
handwritten implementation. To validate that objective,
we ran performance measures on two versions of an al-
gorithm to solve Travelling Salesman Problem (TSP) in-
stances: a handwritten one and another generated by our
library. The algorithm is a Greedy Randomized Adaptive
Search Procedure (GRASP) whose local search is imple-
mented by an Evolutionary Local Search (ELS), named
GRASPxELS. It offers two distinct parallelizable levels.
These tests have been performed on an Intel Xeon CPU E5-
2670 v2 at 2.50 GHz with 20 physical cores and compiled
using g++ 8.2.0 with the O2 optimization flag activated.
All figures result of means of 20 runs, where seeds for
the random number generation were controlled to ensure
repeatability (i.e. that every run, independently of the
number of threads allocated, performs the same amount
of operations and provides the same result).
Figure 2 shows the comparison between handwritten

and automatically generated GRASPxELS for a sequen-
tial implementation, with a varying number of iterations
from 5 to 30 for the outer GRASP loop. No significant
run-time overhead is noticeable. Figure 3 also results of
the comparison between handwritten and automatically
generated GRASPxELS but for a parallel implementation,
with a fixed number of iterations and a varying number of
allotted cores. Similarly, no significant run-time overhead
was measured.

Based on these measures, we conclude that we achieved
an implementation of algorithmic skeletons that performs
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Figure 3: Execution time depending on the number of
cores

as well as a handwritten solution. It enables developers
to describe their algorithms entirely, sequential as well as
parallelizable parts, and to define how the data is trans-
ferred between tasks. The described skeletons can then be
completed by providing simple functions whose signatures
correspond to the slot they try to fill. The knowledge
the library has got, thanks to these algorithmic skeletons,
enables compile-time algorithm analysis and more suited
implementations.
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